THE MAHATMA GANDHI UNIVERSITY

Bachelor in Computer Applications (Honours)

SYLLABUS

MGU-BCA (Honours)

(2024 Admission Onwards)

Faculty: Technology and Applied Sciences

Expert Committee: Computer Application (UG)

Programme: Bachelor in Computer Applications (Honours)

Mahatma Gandhi University Priyadarshini Hills Kottayam – 686560, Kerala, India

CONTENTS

S1.No	Title
1	External Experts & Expert Committee
2	Index Table - 3 rd and 4 th Semesters of BCA (Honours)
3	Semester 3 Course 1 Quantitative Techniques
4	Semester 3 Course 2 Database Management Systems
5	Semester 3 Course 3 Software Engineering
6	Semester 3 Course 4 Design and Analysis of Algorithms
7	Semester 3 Course 5 Python Programming
8	Semester 3 Course 6 Basics of Data Analytics using Spreadsheet (<i>Professional Elective 1- Data Science Specialization</i>)
9	Semester 3 Course 7 Feature Engineering (Professional Elective 1- Artificial Intelligence & Machine Learning Specialization)
10	Semester 3 Course 8 Web Programming -I (Professional Elective 1 - Full Stack Development Specialization)
11	Semester 4 Course 1 Artificial Intelligence
12	Semester 4 Course 2 Entrepreneurship and Startup Ecosystem
13	Semester 4 Course 3 IT and Environmental Sustainability
14	Semester 4 Course 4 Object Oriented Programming using Java
15	Semester 4 Course 5 Probability Distributions and Statistical Inference
16	Semester 4 Course 6 Design Thinking and Innovation
17	Semester 4 Course 7 Data Visualization (Professional Elective 2- Data Science Specialization)
18	Semester 4 Course 8 Introduction to Machine Learning (<i>Professional Elective 2- Artificial Intelligence & Machine Learning Specialization</i>)
19	Semester 4 Course 9 Web Programming -II (Professional Elective 2 - Full Stack Development Specialization)

	External Experts
1	Prof. (Dr.) Bindu V R , Professor and Head, School of Computer Sciences, Mahatma Gandhi University, Kottayam
2	Prof. (Dr.) Sabu M K , Professor, Department of Computer Applications, Cochin University of Science and Technology, Kochi
	Members of the Expert Committee in Computer Application (UG)
1	Dr. Rajimol A, Associate Professor, Department of Computer Applications, Marian College Kuttikkanam (Autonomous), Kuttikkanam (Chairperson UG Board)
2	Dr. Ajitha R S, Assistant Professor, Department of Computer Applications, NSS College, Rajakumari
3	Mr. Bineesh Jose, Assistant Professor, Department of Computer Applications, Pavanatma College, Murickassery
4	Dr. Reji K Kollinal, Assistant Professor, Department of Computer Applications, BPC College, Piravom
5	Ms. Simi M, Associate Professor, Department of Computer Applications, SAS SNDP Yogam College, Konni
6	Ms. Ambili M S, Assistant Professor, Department of Computer Science, Sree Sankara Vidyapeetom College, Valayanchirangara
7	Ms. Bindhu Prabha , Associate Professor, Department of Computer Applications, SAS SNDP Yogam College, Konni
8	Dr. Leena C Sekhar, Associate Professor, Department of Computer Applications, MES College, Marampally GU-BCA (HONOURS)
9	Dr. Juby George, Assistant Professor, Department of Computer Applications, Marian College, Kuttikkanam
10	Dr. Sowmya M R, Assistant Professor, Department of Computer Science, Sree Sankara College, Kalady
11	Mr. Biju Kumar S P, Assistant Professor, Department of Computer Applications, NSS College Rajakumari, Idukki (Dist)

		Third Semester						
Course Code	Course Type	Course Title	Hours / week	*L	*T	*P	*O	Credit
MG3CCRBCA200	CC	Quantitative Techniques	4	4	0	0	0	4
MG3CCRBCA201	CC	Database Management Systems	6	4	0	2	0	5
MG3CCRBCA202	CC	Software Engineering	3	3	0	0	0	3
MG3CCRBCA203	CC	Design and Analysis of Algorithms	3	3	0	0	0	3
MG3SECBCA200	SEC	Python Programming	5	3	0	2	0	4
		Professional Elective – I						
MG3DSEBCA200 MG3DSEBCA201	*DSE	Basics of Data Analytics using Spreadsheet (<i>Data Science</i> <i>specialization</i>) Feature Engineering (<i>Artificial</i> <i>Intelligence & Machine Learning</i> <i>specialization</i>)	4	2	0	2	0	3
MG3DSEBCA202		Web Programming -I (Full Stack Development specialization)	VERS					
		TOTAL	25	19	0	6	0	22
		Fourth Semester	-//					
MG4CCRBCA200	CC	Artificial Intelligence	6	4	0	2	0	5
MG4VACBCA200	#VAC	Entrepreneurship and Startup Ecosystem	2	2	0	0	0	2
MG4VACBCA201	# V / IC	IT and Environmental Solution Sustainability	a	2	0	U	0	2
MG4SECBCA200	SEC	Object Oriented Programming using Java	7	3	0	4	0	5
MG4SECBCA201	SEC	Probability Distributions and Statistical Inference	R§)	4	0	0	0	4
MG4SECBCA202	SEC	Design Thinking and Innovation	2	2	0	0	0	2
		Professional Elective – II						
MG4DSEBCA200		Data Visualization (Data Science Specialization)						
MG4DSEBCA201	*DSE	Introduction to Machine Learning (Artificial Intelligence & Machine Learning Specialization) Web Programming -I (Full	4	2	0	2	0	3
MG4DSEBCA202		Stack Development Specialization)						
		TOTAL	25	17	0	8	0	21

*L-Lecture; *T-Tutorial; *P-Practical/Practicum; *O- Others *DSE- The Student can choose one from the available elective options #VAC- The Student can choose one from the available options

	Mahatma Gandhi University							
विद्यया अयृतमञ्जूरे]	Kottay	am				
Programme	BCA (Honours)							
Course Name	Quantitative Tech	niques						
Type of Course	Core Course							
Course Code	MG3CCRBCA200							
Course Level	NA	ND						
Course Summary	Students will lear tendency and disp and probability ba methods to analyz	persion. Th sics. Upor	ey will un completic	derstand con, students	orrelation, s will appl	regression,		
Semester	3		Credits		4	Total		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours		
	Approach	4	0	0	0	60		
Pre-requisites, if any	NIL विद्यायाः	अम्तर	मञ्चन्द्रते					

COURSE OUTCOMES (CO) GU-BCA (HONOURS)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Describe the fundamental concepts of statistics, including data types, collection methods, and representation techniques, to analyse and interpret data effectively for decision-making in various fields.	U	1
2	C ompute and interpret central tendency and dispersion measures to summarize datasets, assess variability, and make data-driven decisions.	An	1,2
3	Evaluate relationships between variables using correlation coefficients, construct regression models for prediction, and interpret the association between correlation and regression.	А	1,2

Apply fundamental probability concepts to solve real-world problems involving uncertainty and decision-making.	А	1,2		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Un its	Course description					
		Introduction to Statistics					
	1.1	Origin, Definition, Functions, Applications and Limitations of Statistics	2	1			
1	1.2	Population and Sample, Qualitative and Quantitative data, Primary and Secondary data, Methods of collecting primary and secondary data, Drafting a Questionnaire	3	1			
	1.3	Census and Sampling methods, Different types of sampling methods (Definitions only)	2	1			
	1.4	4	1				
		Measures of Central Tendency and Dispersion					
	2.1	Measures of Central Tendency-Arithmetic mean, Median and Mode, Empirical Relationship between mean, median and mode, Graphical location of Median and Mode	6	2			
2	2.2	Combined mean, Weighted mean, Partition Values-Quartiles, deciles and Percentiles	5	2			
	2.3	Measures of Dispersion-Absolute & Relative Measures- Range, Quartile deviation, Mean deviation, Standard deviation	6	2			
	2.4	Variance and Coefficient of Variation.	2	2			
3		Correlation and Regression					

	3.1	Correlation- Definition of different types of correlation, Scatter diagram, Measures-Karl Pearson's correlation coefficient.	3	3
	3.2	Degree of correlation, Spearman's rank correlation coefficient, Tie in ranks.	3	3
	3.3	Probable error, Interpretation of correlation coefficient on the basis of PE, Coefficient of determination.	3	3
	3.4	Regression: Definition of different types of Regression, Regression line, Simple linear Regression-Regression equation of y on x and x on y.	3	3
	3.5	Relationship between correlation coefficient and Regression coefficients, Identification of regression lines and properties, Comparison of correlation and regression.	4	3
		Basic Concepts of Probability		
	4.1	Basic concepts of probability: Random experiment, Sample space, Different types of events, and operations with events.	4	4
4	4.2	Definitions of Probability- Classical, Empirical and Axiomatic. Addition Theorem (up to 3 events).	4	4
	4.3	Conditional Probability, Independence of events, Multiplication theorem (up to 3 events), Bayes Theorem and its applications.	6	4

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Brainstorming lectures Explicit teaching Active Cooperative learning
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) CCA for Theory: 30 Marks • Quiz / MCQ • Assignments • Tests

B. End Semester Examination (ESE)
ESE for Theory: Written Test (70 Marks, 2 Hrs) (Use of a non-programmable calculator allowed)
Part A: Answer any 5 questions out of 8. Each question carries 2 marks. (5 x 2 = 10 marks)
Part B: Answer any 5 questions out of 8. Each question carries 6 marks. (5 x 6 = 30 marks).
Part C: Answer any 2 questions out of 4. Each question carries 15 marks. (2 x 15 = 30 marks)

REFERENCES

1. S.P. Gupta: Statistical Methods (Sultan Chand & Sons Delhi).

SANI

- 2. S.C. Gupta and V.K. Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand and Sons.
- 3. B.L. Agarwal: Basic Statistics, New Age International (p) Ltd.
- 4. Parimal Mukhopadhya: Mathematical Statistics, New Central Book Agency (p) Ltd, Calcutta
- 5. Murthy M.N: Sampling Theory and Methods, Statistical Publishing Society, Calcutta.

विद्यया अम्तमञ्ज

MGU-BCA (HONOURS)

Syllabus

Parent Seguration	Mahatma Gandhi University Kottayam							
Programme	BCA (Honours	s)						
Course Name	Database Man	agement S	Systems					
Type of Course	Core Course							
Course Code	MG3CCRBCA2	201						
Course Level	NA	CNA	Ind					
Course Summary	The Database depth underst of databases, w efficiently. Thi and modern ac	anding of which are cost s course co	the design, rucial for sto overs theore	implementat oring and retr tical concepts	ion, and ma ieving struc s, practical t	anagement tured data		
Semester	3	Total						
Course Details	Learning Lecture Tutorial Practical Others Approach 1 0 1 0							
Pre-requisites,	Basic knowled	4 ge of prog	namming, d	1 ata structures	0 5, algorithms	90 s, set		
if any	theory, logical		0		0			

COURSE OUTCOMES (CO)GU-BCA (HONOURS)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Analyse the Basic Concept of DBMS	An	1
2	Proficiency in Database design and SQL	An	2
3	Understand Normalization and Transaction Management	An	2
4	Analyse MongoDB Database and Operations.	An	2
5	Implement SQL query, and administer MongoDB databases.	А	2
	nber (K), Understand (U), Apply (A), Analyse (An), Evaluate crest (I) and Appreciation (Ap)	(E), Create (C)), Skill

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1	1.1	Introduction to Databases: Definition of Data, Database, and DBMS, Overview of Database Applications, Advantages and Disadvantages of DBMS, Roles of Database Users and Administrators	4	1
	1.2	Data Models: Introduction to Data Models, Types of Data Models (Hierarchical, Network, Relational, Object-oriented), Importance of Data Models in DBMS.	5	1
	1.3	Database Design: Keys: Primary Key, Candidate Key, Super Key, Foreign Key, Composite Key, Alternate Key, Unique Key, Surrogate Key, Constraints in a table: Primary Key, Foreign Key, Unique Key, NOT NULL, CHECK	6	1
2	2.1	Entity-Relationship (ER) Model , Entities and Entity Sets, Attributes and Relationships, ER Diagrams, Key Constraints and Weak Entity Sets, Introduction to the Relational Model and Relational Schema	4	2
	2.2	Relational Algebra and Calculus: Introduction to Relational Algebra, HONOURS) Operations: Selection, Projection, Set Operations, Join Operations, Division, Tuple and Domain Relational Calculus.	5	2
	2.3	Structured Query Language (SQL): SQL Basics: DDL and DML, Aggregate Functions (Min(), Max(), Sum(), Avg(), Count()), Logical operators (AND, OR, NOT), Predicates (Like, Between, Alias, Distinct), Clauses(Group By, Having, Order by, top/limit), Inner Join, Natural Join, Full Outer Join, Left Outer Join, Right outer Join, Equi Join	6	2
3	3.1	Normalization and Database Design: Functional Dependencies: Armstrong's Axioms, Definition, Properties (Reflexivity, Augmentation, Transitivity), Types (Trivial, Non-Trivial, Partial and Full Functional Dependency), Closure of	5	3

		Functional Dependencies, Normal Forms (1NF, 2NF, 3NF, BCNF), Denormalization.		
	3.2	Transaction Management: ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions, Lock-Based Concurrency Control, Performance of Locking,	5	3
	3.3	Transaction Support in SQL,Introduction to Crash Recovery, 2PL, Serializability, and Recoverability, Introduction to Lock Management, Dealing with Deadlocks	5	3
	4.1	NoSQL Databases and Big Data: Introduction to NoSQL, Data Models: Document, Key value, Column family, Graph.	5	4
4	4.2	Uses and Features of NO/SQL document databases. CAP theorem, BASE vs ACID, CRUD operations, MongoDB operators.	5	4
	4.3	Overview of Big Data Technologies: Hadoop, MongoDB, Cassandra	5	4
5	5.1	(Practical Session) Implement SQL query, and administer MongoDB databases. (List of Programs attached)	30	5
		List of Practicals: 1. Draw an ER Diagram of Registrar Office		
		2. Draw an ER Diagram of Hospital Management System		
		3. Reduce The ER diagram in question no 1 into tables		
		4. Reduce the ER diagram of question no 2 into tables		
		Consider the following Schema		
		Supplier(SID, Sname, branch, city, phone)		
		Part(PID, Pname, color, price)		
		Supplies(SID, PID, qty, date_supplied)		
		DDL Commands		

5. Create the above tables
6. Add a new attribute state in supplier table
7. Remove attribute city from supplier table
8. Modify the data type of phone attribute
9. Change the name of attribute city to address
10. Change a table's name, supplier to sup
11. Use truncate to delete the contents of supplies table
12. Remove the part table from database
DML Commands
1. Insert at least 10 records in tables supplier, part and supplies
2. Show the contents in tables supplier, part and supplies
3. Find the name and city of all suppliers
4. Find the name and phoneno of all suppliers who stay in 'Delhi'
5. Find all distinct branches of suppliers
6. Delete the record of the supplier whose SID is 204001
7. Delete all records of supplier table
8. Delete all records of suppliers whose city starts with capital A.
9. Find the supplier names which have 'lk' in any position
10. Find the supplier name where 'R' is in the second position
11. Find the name of supplier whose name starts with 'V' and ends with 'A'
12. Change the city of all suppliers to 'BOMBAY'
13. Change the city of supplier 'Vandana' to 'Goa'
Queries with Constraints
1. Create the supplier table with Primary Key Constraint

2. Create supplies table with Foreign key Constraint
3. Create a part table with UNIQUE Constraint
4. Create supplier Table with Check Constraints
5. Create Supplier table with Default Constraint
Queries on TCL
1. Create Savepoints
2. Rollback to SavePoints
3. Use Commit to save on
Aggregate Functions:
1. Find the minimum, maximum, average and sum of costs of parts
2. Count the total number of parts present
3. Retrieve the average cost of all parts supplied by 'Mike'
Queries on GROUP BY, HAVING AND ORDER BY Clauses
1. Display total price of parts of each color
2. Find the branch and the number of suppliers in that branch for branches which have more than 2 suppliers
3. Find all parts sorted by pname in ascending order and cost in descending order
4. Find the branch and the number of suppliers in that branch
Queries on Analytical, Hierarchical and Recursive nature.
1. Find out the 5th highest earning employee details.
2. Which department has the highest number of employees with a salary above \$80,000, and what percentage of employees in that department have a salary above \$80,000
3. Retrieve employee table details using the hierarchy query and display that hierarchy path

r	
	starting from the top level indicating if it is a leaf and there exists a cycle.
	4. What is the average salary for employees in the top 2 departments with the highest average salary, and what is the hierarchy of departments and sub-departments for these top 2 departments?
	5. Use recursion to retrieve the employee table and display the result in breadth first and depth first order.
	6. Write a recursive query to show the equivalent of level, connect_by_root and connect_by_path
	7. Use recursion to retrieve the employee table and display the result in depth first order showing id, parent_id, level, root_id, path and leaf.
	Queries on Operators
	1. Find the pname, phoneno and cost of parts which have cost equal to or greater than 200 and less than or equal to 600.
	2. Find the sname , SID and branch of suppliers who are in 'local' branch or 'global' branch
	3. Find the pname, phoneno and cost of parts for which cost is between 200 and 600
	4. Find the pname and color of parts , which has the word 'NET' anywhere in its pname.
	5. Find the PID and pname of parts with pname either 'NUT' or 'BOLT'
	6. List the suppliers who supplied parts on '1st may2000', '12 JAN 2021' ,'17 dec 2000' ,'10 Jan 2021'
	7. Find all the distinct costs of parts
	Join Operators
	1. Perform Inner join on two tables
	2. Perform Natural Join on two tables
	3. Perform Left Outer Join on tables
	4. Perform Right Outer join on tables
	1I

5. Perform Full Outer Join on tables
Set Theory Operators
1. Show the use of UNION operator with union compatibility
2. Show the use of intersect operator with union compatibility
3. Show the use of minus operator with union compatibility
4. Find the cartesian product of two tables
Queries on Set Theory Operators
1. List all parts except 'NUT' and 'BOLT' in ascending order of costs
2. display all parts that have not been supplied so far
3. To display the supplier names who have supplied 'green' part with cost 500 Rupees AND 'red' part with cost 400 Rupees.
4. To Display the name of suppliers who have supplied all parts that are 'red' in color.
PL/SQL Programs
1. Write a PL/SQL Code to add two numbers
2. Write a PL/SQL code for Fibonacci series
3. Write a PL/SQL Code for greatest of 3 numbers
4. Write a PL/SQL code for area and circumference of a circle
PL/SQL Programs on Cursors
1. Write a Program using CURSOR to display SID and city of 1st record of
supplier
2. Write a program using cursors to display the SID and City of all suppliers and then print the count of suppliers.
PL/SQL Programs on Triggers, Procedures and Functions
1. Write a Program using TRIGGER on UPDATE

r	
	2. Write a command to See the effect of trigger
	3. Write a Program using PROCEDURE to
	increase the cost by Rs.1000 for part whose PID is passed as an argument.
	4. Write a procedure to update the city of an
	supplier whose SID and city are passed as
	arguments and the procedure returns the name of supplier whose city is updated.
	5. Write a function to return the total number of suppliers
	6. Write a function to return the PID of part, for which the part name is passed
	7. Write a function to find the sum total of costs of all parts.
	PL/SQL Programs on Implicit Cursors
	1. Insert a record using %ROWTYPE
	2. Write a code using %NOTFOUND, %FOUND, %ROWCOUNT
	3. Write a code using %TYPE
	MongoDB Queries
	1. Create a collection and insert documents into it using insertOne() and insertMany()
	 Select all documents in collection Find the count of all suppliers
	4. Find all records that have city = 'Delhi'
	5. Retrieve all documents that have color equal to 'red' or 'green'
	6. Retrieve all documents where part_name is 'P1' or price is less than 200.
	7. Update the record of 'Geeta' ,set city = 'Bombay' and phoneno = '11223344'
	8. Delete all records where price is greater than 5000
	9. Display only the name and city of the supplier
	10. Sort all suppliers on city and display only the first two records.

	Classroom Procedure (Mode of transaction)
Teaching	• Lecture
and Learning	Demonstration
Approach	Practical sessions
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) CCA for Theory: 30 Marks • Written test • Assignments • Viva • MCQ, etc. CCA for Practical: 15 Marks • Practical assignments • Lab Record • Observation of practical skills • Viva etc.
	C. End Semester Examination (ESE)
	ESE for Theory: Written Test (70 Marks, 2 Hrs.)
	 Part A: Very Short Answer Questions (Answer all) - (5*2=10 Marks) Part B: Short Answer Questions (5 out of 7 Questions) - (5*6=30 Marks) Part C: Essay Questions (2 out of 3 Questions) - (2*15=30 Marks) ESE for Practical: (35 Marks, 1.5 Hrs.) Logic - 10 Marks Successful Compilation - 5 Marks Output - 5 Marks Viva - 10 Marks Record - 5 Marks

REFERENCES:

- 1. Ramez Elmasri and Shamkant B. Navathe Database Systems, Seventh Edition, Pearson Education. (Module 1,2,3)
- 2. Kristina Chodorow, MongoDB: The Definitive Guide, Second Edition, O'Reilly Media. (Module 4)

SUGGESTED READINGS:

- 1. Reghu Ramakrishnan and Johannes Gehrke- Database Management Systems, Third edition, Mc Graw Hill International Edition.
- 2. Benjamin Rosenzweig, Elena Rakhimov, "Oracle PL/SQL by Example", fifth edition, Prentice Hall, 2015
- 3. Brad Dayley, "NoSQL with MongoDB in 24 Hours", 1st edition, Sams Publishing, 2024
- 4. Andreas Meier, Michael Kaufmann, SQL & NoSQL Databases-Models, Languages, Consistency, Options and Architectures for Big Data Management.

WEB RESOURCES:

- 1. https://oracle-base.com/articles
- 2. https://forums.oracle.com/ords/apexds/domain/devcommunity/category /sql_and_pl_sql
- 3. https://www.mongodb.com/docs/manual/MongoDB-manual.pdf

MGU-BCA (HONOURS)

Syllabus

ALE	Mahatma Gandhi University Kottayam					
Programme	BCA(Honour	s)				
Course Name	Software Eng	ineering				
Type of Course	Core Course	Core Course				
Course Code	MG3CCRBCA202					
Course Level	NA					
Course Summary	This course provides a comprehensive understanding of the software development lifecycle (SDLC) and equips students with the skills to manage, design, develop, and test robust software solutions. Emphasizing contemporary practices and strategic decision-making, it prepares students to excel in project management and deliver efficient, maintainable software systems.					
Semester	3		Credits		3	Total
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical	Others 0	Hours 45
Pre- requisites, if any	Basic understanding of software, applications, and programming fundamentals.					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon co	ompletion of this course, the students will be able to:		-
1	Illustrate the software development lifecycle and its application in contemporary software engineering practices.	An	1
2	Analyse project management methodologies and strategic decision making for successful software project execution.	An	1,2
3	Analyse software design, development, and testing processes to produce robust and efficient software solutions.	An	1,2

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs.	CO No.
	1.1	The evolving role of software, changing nature of software, layered technology, a process framework	5	1
1	1.2	Process models: The waterfall model, incremental process models, evolutionary process models, the unified process.	5	1
	1.3	Agile software development: Agility Principles, Agile methods, Plan-driven and agile development, Extreme programming, Scrum, A Tool Set for the Agile Process.	5	1
	2.1	Software Requirements Engineering: Functional and non-functional requirements, the software requirements document, Requirements specification, Requirements engineering processes, Requirements elicitation and analysis, Requirements validation, Requirement management.	5	2
2	2.2	Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.	5	2
	2.3	Project planning- Software pricing, Plan-driven development, Project scheduling, Agile planning, Estimation techniques.	5	2
3	3.1	Design: Design process and design quality, design concepts, the design model, software architecture, data design, architectural design, Basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.	5	3
	3.2	Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black- box and white-box testing, validation testing, system testing, the art of debugging.	5	3

	Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source	5	3
	code, metrics for testing, metrics for maintenance.		

Teaching and	Classroom Procedure (Mode of transaction)								
Learning Approach	Lecturing, Demonstration through ICT tools								
	MODE OF ASSESSMENT								
Assessment	A. Continuous Comprehensive Assessment (CCA)								
Types	CCA for Theory: 25 Marks								
-) F	Written test								
	Assignment								
	MCQ/Quiz								
	D. End Semester Examination (ESE)								
	ESE for Theory: Written test (50 Marks, 1.5 Hrs)								
	Part A: Very Short Answer Questions (Answer all) - (10*2=20 Marks)								
	Part B: Short Answer Questions (3 out of 5 Questions)- (3*5=15 Marks)								
	Part C: Essay Questions (1 out of 2 Questions) - (1*15=15 Marks)								

REFERENCES

1. Software Engineering A practitioner's Approach, 8th edition, Roger S Pressman, Bruce R. Maxim. McGraw Hill Education, 2015.

TAYP

- 2. Software Engineering, Ian Somerville, 9th edition, Pearson education
- 3. Software Engineering, N.S. Gill, Khanna Publishing House, 2023

- 1. Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007
- 2. Software Engineering: Principles and Practice Hans van Vliet

Rener Stranger	Mahatma Gandhi University Kottayam								
Programme	BCA (Honours)								
Course Name	Design and Analy	sis of Algori	thms						
Type of Course	Core Course	Core Course							
Course Code	MG3CCRBCA203	MG3CCRBCA203							
Course Level	NA	GAIN	HIN						
Course Summary	The course prov algorithm design efficiency through design and imple various domains.	techniques time and spa	and emphas	izes the ar y. <mark>S</mark> tudents	nalysis of will gain th	algorithm e skills to			
Semester	3		Credits		3	Total			
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical 0	Others 0	Hours 45			
Pre- requisites, if any	Thorough underst	anding of Da	ta Structures a	and algorith	ıms.				

MGU-BCA (HONOURS)

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon co	mpletion of this course, the students will be able to:		
1	Illustrate basic algorithm designing paradigms and analyse the performance of algorithms	An	1
2	Analyse the design approaches- Divide and Conquer and the greedy method and apply them in real-life problems	An	2
3	Synthesize algorithms using Dynamic Programming, Backtracking approaches and apply to common real-life problems.	An	2
*Remem	ber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Si	kill (S),
Interest	(I) and Appreciation (Ap)		

COURSE CONTENT

Module	Units	Course description	Hrs.	CO No.
	1.1	Algorithm: Introduction, Definition of Algorithm, Algorithm design techniques.	3	1
1	1.2	Performance Analysis :Space complexity, Time Complexity, Asymptotic notations :(O, Ω , θ) to measure growth of a function and application to measure	3	1
	1.3	Recursion: Basic concept. Analysis of recursive algorithms.	3	1
	2.1	Divide & Conquer Design Technique: The general concept. Binary search, finding the maximum and minimum, merge sort, quick sort. Best and worst case analysis for the mentioned algorithms. Strassen's matrix multiplication.	10	2
2	2.2	The Greedy Design Technique: The general concept. Applications to general Knapsack problem.	4	2
	2.3	Spanning trees: Prim's and Kruskal's algorithms, Dijkstra's Algorithm for finding single source shortest paths problem.	5	2
	3.1	The Dynamic Programming Design Technique: The general concept, All pair of shortest paths problem (Floyd-Warshall's algorithm)	5	3
3	3.2	Algorithms on Graphs: Breadth First Search, Depth First Search, finding connected components, depth-first search of a directed graph	7	3
	3.3	Backtracking Method: concept, N-Queen problem; Sum of subsets problem, Hamiltonian circuit problem	5	3

Teaching and Learning	Classroom Procedure (Mode of transaction)
Approach	Lecturing, ICT enabled Sessions, Discussions
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
Assessment Types	CCA for Theory: 25 Marks
	Written test Assignments
	AssignmentsMCQ
	E. End Semester Examination (ESE)
	ESE for Theory: Written Test (50 Marks, 1.5 Hrs)
	Part A: Very Short Answer Questions (Answer all) - (10*2=20 Marks)
	Part B: Short Answer Questions (3 out of 5 Questions) - (3*5=15 Marks)
	Part C: Essay Questions (1 out of 2 Questions) - (1*15=15 Marks)

REFERENCES

- 1. Horowitz Ellis, Sahni Sartaj and Rajasekaran Sanguthevar, Fundamentals of Computer Algorithms, University Press (I) Pvt. Ltd., 2012.
- 2. Gajendra Sharma, Design and Analysis of Algorithms, Khanna Publishing House

3. Cormen Thomas H., Leiserson Charles E., Rivest Ronald L. and Stein Cliffo Introduction to Algorithms, PHI publication, 3rd Edition, 2009

344439

SUGGESTED READINGS

1. Aho Alfred V., Hopcroft John E. & Ullman Jeffrey D., The Design & Analysis of Computer Algorithms, Addison Wesley Publications, Boston, 1983.

દાસા

2. Kleinberg Jon & Tardos Eva, Algorithm Design, Pearson Education, 2006. Web Resources.

Parra Signard	Mahatma Gandhi University Kottayam								
Programme	BCA (Honou	s)							
Course Name	Python Progr	amming							
Type of Course	SEC								
Course Code	MG3SECBCA	200							
Course Level	NA	GAN	PHIN						
Course Summary	This course is of data using analysis, perf visualizations	; Python. S orm simple	tudents wil statistical	l learn hov analysis, ci	v to prepa reate mean	re data for			
Semester	3	K	Credits		4	Total			
Course Details	Learning Approach	Lecture 3	Tutorial	Practical	Others	Hours 75			
Pre-requisites, if any	Understandin language and	0	0	chniques us	sing a prog	amming			

COURSE OUTCOMES (CO) -BCA (HONOURS)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Analyse Python programming concepts.	An	1
2	Apply suitable Python programming constructs, built-in data structures using Python libraries to solve problems.	An	2
3	Analyse basic Data visualization and File handling in Python.	An	2
4	Solve problems using Python Programming.	А	2
	nber (K), Understand (U), Apply (A), Analyse (An), Evaluat erest (I) and Appreciation (Ap)	e (E), Create (C	C), Skill

COURSE CONTENT

Module	Units	Course description	Hrs.	CO No.		
	1.1	Introduction: History and Application areas of Python; Structure of Python Program; Identifiers and Keywords; Operators and Precedence; Basic Data Types and type conversion; Statements and expressions; Input/Output statements.	5	1		
1	1.2	Strings: Creating and Storing Strings, Built-in functions for strings; string operators, String slicing and joining; Formatting Strings.	5	1		
	1.3	Control Flow Statements: Conditional Flow statements; Loop Control Statements; Nested control Flow; continue and break statements, continue, Pass and exit.	5	1		
	2.1	Functions: Built-In Functions, Function Definition and call; Scope and Lifetime of Variables, Default Parameters, Command Line Arguments; Lambda Functions; Assert statement; Importing User defined module;	5	2		
2	2.2	Mutable and Immutable objects: Lists, Tuples and Dictionaries; Commonly used Functions on Lists, Tuples and Dictionaries. Passing Lists, tuples and Dictionaries as arguments to functions. Using Math and Numpy module for list of integers and arrays.	10	2		
3	3.1 Files: Types of Files; Creating, Reading and writing on Text and Binary Files;The Pickle Module, Reading and Writing CSV Files. Reading and writing of csv and JSON					
	3.2	Exception Handling: Try-except-else-finally block, raise statement, hierarchy of exceptions, adding exceptions.	5	3		
	3.3	Data visualization: Plotting various 2D and 3D graphics; Histogram; Pi charts; Sine and cosine curves.	5	3		
4	4.1	Practical List:1. Write a program to find whether a number is a prime number.2. Write a program to print m raise to power n, where m and n are read from the user.	30	4		

	1
3. Write a program having a parameterised function that returns True or False depending on whether the	
parameter passed is even or odd.	
4. Write a program to print the summation of the	
following series upto n terms:1-2+3-4+5 6+7 n	
5. Write a menu driven program to perform the following	
operations on strings using string built in functions.	
a. Find the frequency of a character in a string.	
b. Replace a character by another character in a string.	
c. Remove the first occurrence of a character from a	
string.	
d. Remove all occurrences of a character from a string.	
6. Write a program that accepts two strings and returns	
the indices of all the occurrences of the second string in	
the first string as a list. If the second string is not present	
in the first string, then it should return -1	
7. Using Numpy module write menu driven program to	
do following	
a. Create an array filled with 1's.	
b. Find maximum and minimum values from an array	
c. Dot product of 2 arrays.	
d. Reshape a 1-D array to 2-D array.	
8. Write a function that takes a sentence as input from the	
user and calculates the frequency of each letter. Use a	
variable of dictionary type to maintain the count.	
9. Consider a tuple t1=(1,2,5,7,9,2,4,6,8,10). Write a	
program to perform following operations:	
a. Print contents of t1 in 2 separate lines such that half	
values come on one line and other half in the next line.	
b. Print all even values of t1 as another tuple t2.	
c. Concatenate a tuple $t2=(11,13,15)$ with 1.	
d. Return maximum and minimum value from t1	
10. Write a function that reads a file file1 and copies only	
alternative lines to another file file2. Alternative lines	
copied should be the odd numbered lines.	
-	
11. Write a Python program to handle a	
ZeroDivisionError exception when dividing a number	
by zero.	
12. Write a program that reads a list of integers from the	
user and throws an exception if any numbers are	
duplicates.	
-	
13. Write a program that makes use of a function to display sing cosing polynomial and exponential survey	
display sine, cosine, polynomial and exponential curves.	
14. Take as input in the months and profits made by a	
company ABC over a year. Represent this data using a	
line plot. Generated line plot must include X axis label	

name = Month Number and Y axis label name = Total	
profit.	

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture Demonstration Lab Practicals
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) CCA for Theory: 25 Marks • Written test • Assignments etc. CCA for Practical: 15 Marks • Practical assignments • Lab Record • Observation of practical skills • Viva etc.
	 F. End Semester Examination (ESE) ESE for Theory: Written Test (50 Marks, 1.5 Hrs) Part A: Very Short Answer Questions (Answer all) - (10*2=20 Marks) Part B: Short Answer Questions (3 out of 5 Questions) - (3*5=15 Marks) Part C: Essay Questions (1out of 2 Questions) - (1*15=15 Marks) ESE for Practical: 35 Marks (1.5 Hrs) Logic - 10 Marks Successful Compilation - 5 Marks Output - 5 Marks Viva - 10 Marks Record - 5 Marks

REFERENCES

- 1. Fabio Nelli, "Python Data Analytics Data Analysis and Science Using Pandas, Matplotlib, and the Python Programming Language", Edition 1, 2015, Apress.
- 2. Wes Mckinney ,"Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter" 3rd Edition, O'Reilly, 2022.

SUGGESTED READINGS

- 1. Think Python, by Allen Downey, 2 nd edition, 2015, O'Reilly.
- 2. An introduction to Python for absolute beginners, by Bob Dowling, Cambridge Univ.
- 3. Introduction to Computation and Programming using Python, by John Guttag, 2 nd edition, 2016, PHI India.

Web Resources:

- 1. https://www.learnpython.org/
- 2. https://www.w3schools.com/python/default.asp
- 3. https://wesmckinney.com/book/

MGU-BCA (HONOURS)

Syllabus

Recent supervise	Mahatma Gandhi University Kottayam								
Programme	BCA (Honours	s)							
Course Name	Basics of Data	Analytics	using Spre	eadsheet					
Type of Course	DSE								
Course Code	MG3DSEBCA200								
Course Level	NA	CAN	DU						
Course Summary	practical appli data manipula using spreads enabling effec communicatin	This course introduces the fundamentals of data analytics and its practical applications, focusing on building a strong foundation in data manipulation and analysis. Students will develop proficiency in using spreadsheet software to create and analyze data models, enabling effective decision-making. The course also emphasizes communicating data insights clearly, equipping students with the skills needed for real-world problem-solving and business analytics.							
Semester	3	Total							
Course Details	Others	Hours							
	Approach	2	0	1	0	60			
Pre-requisites, if any	Knowledge of as arithmetic, p				-	pts such			

Syllabus

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	completion of this course, the students will be able to:		
1	Understand the basics of data analytics and its applications.	U	1
2	Develop proficiency in using spreadsheet software for data manipulation and analysis.	А	2
3	Build and use spreadsheet models for decision making & Communicate data insights effectively	А	2

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description		CO No.
1	1.1	Understanding data and its types (structured, unstructured, semi-structured)-What is Data Analytics- Types of data Analytics	5	1
	1.2	Importance of Data Analytics- Applications of Data Analytics.	5	1
	2.1	Data Collection Methods - Different Data Sources & format - Data Cleaning and Transformation - Handling Missing Data and Outliers.	8	2
2	2.2	Ethical considerations in data analytics	4	2
	2.3	Real-world Applications of Data Analytics- Industry- specific applications (finance, marketing, operations) - Case Study Note: Case study is for discussion not to be considered for evaluation.	8	2
Lab Practice				
3	3.1	Introduction to Spreadsheet tool- Basic Functions, Data importing and pre-processing	5	3
	3.2	Descriptive Statistics Using Spreadsheet, Advanced Spreadsheet functions	10	3
	3.3	Data visualization techniques, Dashboard creation	15	3

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, Practical, Demonstration through ICT tools
Assessment	MODE OF ASSESSMENT
Types	Continuous Comprehensive Assessment (CCA)

CCA for Theory: 15 Marks
Written test
Assignment
• MCQ/Quiz
CCA for Practical: 15 Marks
Practical assignments
Lab Record
Observation of practical skills
• Viva
G. End Semester Examination (ESE)
ESE for Theory: Written test (35 Marks, 1 Hr)
Part A: Short Answer Questions (7 out of 10 Questions) - (7*5=35 Marks)
ESE for Practical: (35 Marks, 1.5 Hr.)
Procedure - 10 Marks
• Output – 10 Marks
• Viva - 10 Marks
Record - 5 Marks
• Record - 5 Marks

REFERENCES

- 1. "Data Analytics" by V.K. Jain, Khanna Book Publishing Company, 2024.
- 2. "Excel Data Analysis For Dummies" by Stephen L. Nelson and E. C. Nelson, John Wiley & Sons; 3rd edition, 2016

TTAYAM

3. "Data Analysis Using Microsoft Excel" by Michael R. Middleton, Thomson, Brooks/Cole, 3rd edition, 2004

SUGGESTED READINGS

- 1. "Excel 2019 Bible" by Michael Alexander, Richard Kusleika, and John Walkenbach, John Wiley & Sons, 25 Sept 2018
- 2. "Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Business Analytics" by Cliff T Ragsdale, Cegage learning asia pet. 2015
- 3. "Mastering Excel" by WebTech Solutions, Khanna Publishing House, 2024.

Aller Suburnet		Mahatma	a Gandh Kottaya		ersity	
Programme	BCA (Honours)					
Course Name	Feature Engi	neering				
Type of Course	DSE					
Course Code	MG3DSEBC	A201				
Course Level	NA	CAN	DU			
Course Summary	This course covers the essential concepts of feature engineering and preprocessing techniques in machine learning. It explores the importance of features, differentiating between structured and unstructured data, and various feature types such as categorical, numerical, text, and date-time. Students will learn how to handle missing data, clean datasets, and apply scaling and normalization. The course also delves into advanced techniques like binning, polynomial features, log transformation, one-hot encoding, label encoding, and feature selection methods, including filter and wrapper methods, while emphasizing the application of Principal Component Analysis (PCA) for dimensionality reduction.			ortance of data, and date-time. and apply echniques encoding, d wrapper		
Semester 3 fair and Credits 3		3	Total Hours			
Course Details	Learning Approach	Lecture 2	Tutorial 0	Practical	Others 0	60
Pre-requisites, if any	Basic knowledge of data analytics/machine learning and familiarity with any programming language					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	completion of this course, the students will be able to:		
1	Understand the importance of features in machine learning and differentiate between various types of data and features.	U	1
2	Apply basic feature preprocessing techniques such as handling missing data, data cleaning, and feature scaling and normalization	А	2

3	Implement feature engineering techniques for numerical data, including binning, discretization, polynomial and interaction features, and log transformation.	А	2	
4	Utilize categorical data techniques, such as one-hot encoding and label encoding, and understand feature selection methods, including filter and wrapper methods.	А	2	
5	Perform feature transformation using techniques like Principal Component Analysis (PCA) and understand its application in machine learning.	An	2	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Units Course description		Hrs	CO No.
	1.1	Introduction to Feature Engineering: Introduction to Data and Features, Importance of Features in Machine Learning.	4	1
1	1.2	Data types and features: Numerical, Categorical, Ordinal, Discrete, Continuous, Interval and Ratio.	4	1
	1.3	Basic Feature Preprocessing: Handling Missing Data, Data Cleaning, Feature Scaling, Normalization, and Transformation.	6	2
2	2.1	Techniques for Numerical Data: Binning and Discretization, Polynomial and Interaction Features.	6	3
	2.2	Categorical Data Techniques: One Hot Encoding, Label Encoding.	4	4
	2.3	Feature extraction vs. feature selection, Steps in feature selection. Feature Selection Methods: Filter, Wrapper, and Hybrid. Feature Reduction: Introduction and application of Principal Components Analysis.	6	4
3		Lab Practice		
	3.1	Introduction to Python relevant libraries such as numpy, pandas, sklearn, nltk, matplotlib, and seaborn. Kaggle.	10	2

	Dataset access and preprocesing: Handling Missing Data (Mean, Median, Mode Imputation), Data Cleaning		
3.2	Exploratory Data Analysis (EDA): Histograms and Boxplots, Correlation Matrix Computation and Visualization. Binning and Discretization of Numerical Data,	10	3,4
3.3	Polynomial and Interaction Feature Creation, Logarithmic Transformation for Skewed Data. Text Data Preprocessing, Principal Component Analysis.	10	2,3,5

Teaching and Learning	Classroom Procedure (Mode of transaction)
Approach	Lecture, Practical, Demonstration through ICT tools, Discussion
	A. Continuous Comprehensive Assessment (CCA) CCA for Theory: 15 Marks
Assessment Types	 Written test Assignment MCQ/Quiz
	 CCA for Practical: 15 Marks Practical assignments Lab Record Observation of practical skills
	• Viva
	B. End Semester Examination (ESE) ESE for Theory: Written test (35 Marks, 1 Hr)
	Part A : Very Short Answer Questions(Answer all) - (10*2=20 Marks) Part B : Short answer questions (3 out of 5 questions) - (3*5=15 Marks) ESE for Practical: (35 Marks, 1 Hr.)
	1. Design and Development - 20 Marks 2. Viva - 10 Marks 3. Record - 5 Marks

REFERENCES

1. M.C. Trivedi, Data Science and Data Analytics Using Python Programming, Khanna Publishing House, 2024.

- 2. Han, Jiawei, Kamber, Micheline, & Pei, Jian. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann Publishers. ISBN 978-0123814791.
- 3. Zheng, Alice, & Casari, Amanda. (2018). Feature engineering for machine

learning: Principles and techniques for data scientists. O'Reilly Media, Inc.

4. Kalita, J. K., Bhattacharyya, D. K., & Roy, S. (2023). Fundamentals of Data Science: Theory and Practice. Elsevier. ISBN-13: 9780323917780

SUGGESTED READINGS:

- 1. Duda, R. O., Hart, P. E., Stork, D (2007). Pattern classification (2Ed), John Wiley &Sons, ISBN-13: 978-8126511167.
- 2. N. Bhaskar, Vasundhara, Machine Learning, Khanna Publishing House, 2024.
- 3. M.C. Trivedi, Deep Learning and Neural Network_MC Trivedi, Khanna Publishing House, 2024.
- 4. Ng, Andrew. (2018). Machine learning yearning (Draft, MIT Licensed). GitHub. ISBN10: 199957950X, ISBN-13: 978-1999579500.
- 5. Tan, Pang-Ning, Steinbach, Michael, Karpatne, Anuj, & Kumar, Vipin. (2021). Introduction to data mining (2nd ed.). Pearson. ISBN 978-9354491047.
- 6. Provost, Foster, & Fawcett, Tom. (2013). Data science for business: What you need to know about data mining and data-analytic thinking. O'Reilly Media, Inc.
- 7. Galli, Soledad. (2020). Python feature engineering cookbook: Over 70 recipes for creating, engineering, and transforming features to build machine learning models. Packt Publishing, Limited.
- 8. Nielsen, Aileen. (2019). Practical time series analysis: Prediction with statistics and machine learning. O'Reilly Media.
- 9. Rajiv Chopra, Deep Learning, Khanna Publishing House, 2024.
- 10. Jeeva Jose, Machine Learning, Khanna Publishing House, 2024.
- Chollet, François. (2017). Deep learning with Python. Manning Publications. ISBN 9781617294433.
 MGU-BCA (HONOURS)

Syllabus

Ангин энрегизере	Mahatma Gandhi University Kottayam		
Programme	BCA(Honours)		
Course Name	Web Programming-I		
Type of Course	DSE		
Course Code	MG3DSEBCA202		
Course Level	NA		
Course Summary	This course covers the essential concepts of feature engineering and preprocessing techniques in machine learning. It explores the importance of features, differentiating between structured and unstructured data, and various feature types such as categorical, numerical, text, and date-time. Students will learn how to handle missing data, clean datasets, and apply scaling and normalization. The course also delves into advanced techniques like binning, polynomial features, log transformation, one-hot encoding, label encoding, and feature selection methods, including filter and wrapper methods, while emphasizing the application of Principal Component Analysis (PCA) for dimensionality reduction.		
Semester	3 AT TO HOLE		
Course Details	Learning ApproachLectureTutorialPracticalOthers201060		
Pre-requisites, if any	Basic Understanding of HTML		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon	Upon completion of this course, the students will be able to:				
1	Understand the fundamental concepts and components of web development.	U	1		
2	Apply intermediate-level web development techniques and develop PHP Programming Skills:	А	2		
3	Integrate PHP with Databases	А	2		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Introduction to web, WWW architecture .Introduction to PHP, Server-side scripting, XAmPP, Role of web server software, PHP comments, variables, echo and print, PHP operators, data types.	3	1
1	1.2	PHP branching statements and loping statements, arrays in PHP-numeric array, associative array, multidimensional array, array functions in PHP.	6	1,2
	1.3	Multidimensional array, array functions in PHP push, pop, shift, unshift, array_search, in_array, sort(), rsort, asort, arsort, ksort, krsort.	6	1,2
	2.1	PHP form: \$_GET,\$_POST,\$_SERVER , \$_REQUEST , \$_GLOBALS , include and require function	6	2
2	2.2	Basic MYSQL commands CRUD	4	2,3
	2.3	PHP- MYSQL database connectivity using procedure oriented methods-mysqli_connect, mysqli_clos	3	2,3
	2.4	ysqli_query, mysqli_fetch_row, mysqli_fetch_assoc, ysqli_fetch_array	2	2,3
	Lab Pr	actice		
3	3.1	Using PHP, create dynamic websites, form handling applications	10	1,2
	3.2	CRUD (Create, Read, Update, Delete) applications, arrays and data manipulation programs	10	2
	3.3	Dynamic content display and PHP-MySQL database connectivity applications.	10	3

Teaching	Classroom Procedure (Mode of transaction)
and	
Learning	Lecture,, Demonstration through ICT tools
Approach	
rippiouen	
	A. Continuous Comprehensive Assessment (CCA)
	CCA for Theory: 15 Marks
	Written test
	• Assignment
Assessment	• MCQ/Quiz
Types	CCA for Practical: 15 Marks
	Practical assignments
	• Lab Record
	Observation of practical skills
	• Viva
	B. End Semester Examination (ESE)
	ESE for Theory: Written test (35 Marks, 1 Hr)
	Part A: Very Short Answer Questions (Answer all) - 10 X2 = 20 Marks
	Part B: Short answer questions (3 out of 5 questions) - 3X5 = 15 Marks
	ESE for Practical: (35 Marks, 1 Hr.)
	1. Design and Development - 20 Marks
	2. Viva - 10 Marks 21 312 CH 35 CH
	3. Record - 5 Marks
REFERENCES	· · · · · · · · · · · · · · · · · · ·

- 1. Dave W Mercer, Allan Kent, Steven D Nowicki, David Mercer, Dan Squier, Wankyu Choi- "Beginning PHP5", Wiley Publishing, Inc.
- 2. Adrian W. West, Steve Prettyman, Practical PHP 7, MySQL 8, and MariaDB Website Databases, A Simplified Approach to Developing Database-Driven Websites, Second Edition, Apress

SUGGESTED READINGS:

- 1. Mike O'Kane, Essential Algorithms, Syntax, and Control Structures Using PHP, HTML, and MariaDB/MySQL, Carolina Academic Press, Fourth Edition.
- 2. Julie C. Meloni, Teach Yourself PHP, MySQL® and Apache All in One, Fifth Edition.

AND HI CAN	Ν	Aahatn	na Gan	dhi Uni	iversity	7	
Tanan Subunada	Kottayam						
Programme	BCA (Honours)						
Course Name	Artificial Intell	igence					
Type of Course	Core Course						
Course Code	MG4CCRBCA	200					
Course Level	NA	GAN	DH				
Course Summary	The course introduces the fundamental concepts of Artificial Intelligence (AI). It covers AI problem-solving search techniques, including both uninformed and informed search methods. The role of logic and reasoning in AI is explored, along with essential inference techniques. Various domains and applications of AI are examined, such as Machine Learning, Computer Vision, Robotics, Natural Language Processing, and Deep Neural Networks. The course also examines the architecture and role of expert systems through case studies. Additionally, it addresses the legal and ethical issues related to AI, discussing privacy, bias, and societal impacts.						
Semester	4	না সব্দ	Credits		5	Total Hours	
Course Details	Learning Approach	Lecture 4	Tutorial 0	Practical 1	Others 0	90	
Pre-requisites, if any	Basic understar structures and such as Python.	algorithms.	7	-	0		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Describe the characteristics of rational agents and gain insights about problem-solving agents.	An	1,2
2	Analyse Uninformed and informed search techniques.	An	1, 2

3	Apply knowledge representation using Propositional logic and Predicate calculus for inference/reasoning and handling uncertainty through probabilistic reasoning and fuzzy sets	An	1, 2, 3	
4	Illustrate AI domains and their applications and examine the legal and ethical issues of AI	An	2	
5	Apply search strategies, solve constraint-based problems, build rule-based systems, evaluate optimization methods, and use basic NLP techniques in intelligent systems.		1, 2	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1	Introduction to Al What is AI? Intelligent Agents: Agents and environment, the concept of Rationality, the nature of environment, the structure of Agents	5	1
1	2	Knowledge-Based Agents: Introduction to Knowledge-Based Agents, The Wumpus World as an Example World.	5	1
	3	Problem-solving: Problem-solving agents	5	1
	1	Advanced Search Techniques Uninformed Search: DFS, BFS.	3	2
	2	Informed Search: Best First Search, A* search, AO* search.	4	2
2	3	Constraints and Constraint Satisfaction Problems (CSPs), Backtracking search for CSP. Adversarial Search & Games: Two-player zero-sum games, Minimax Search, Alpha-Beta pruning.	4	2
	4	Evolutionary Search Techniques: Introduction to evolutionary algorithms, Genetic algorithms, Applications of evolutionary search in AI.	4	2
	1	Logical Reasoning and Uncertainty Logic: Propositional logic, First-order predicate logic, Propositional versus first-order inference, Unification and lifting.	5	3

	2	First Order Inference: Forward chaining, Backward chaining, Resolution, Truth maintenance systems.	5	3
3	3	Handling Uncertainties:, Probabilistic reasoning, Introduction to Fuzzy set theory	5	3
	1	Domains and Applications of AI: Introduction to Machine Learning, Computer Vision, Robotics, Natural Language Processing, Neural Networks.	6	4
4	2	Expert Systems: The architecture and role of expert systems (include two case studies).	6	4
	3	Legal and Ethical Issues: Concerns related to AI	3	4
	Case	Studies of each module of the syllabus, providing real-world relevance and practical insights	30	5

MGU-BCA (HONOURS)

		Case Study 1: AI in Customer Service (Intelligent Agents)
		 Scenario: A leading e-commerce platform implements AI-powered chatbots to handle customer queries efficiently. Details: Discuss how intelligent agents operate in dynamic environments, adapt to user inputs, and learn over time. Focus on concepts like rationality, agent structure, and agent-environment interaction.
5		Case Study 2: The Wumpus World
	p - 1	 Scenario: The classic Wumpus World problem illustrates knowledge- based agents navigating an environment with uncertainty. Details: Extend the problem to real-world examples, such as robot navigation in unknown terrains or automated cleaning robots in dynamic home environments.
	Group - 1	Case Study 3: Google Maps and Navigation Systems (Search Techniques)
		 Scenario: Explore how Google Maps uses A* search for route optimization and heuristic-based problem-solving. Details: Discuss the trade-offs between uninformed (DFS, BFS) and informed searches like A*, and their real-world implications for user experience.
		Case Study 4: Chess and Adversarial Search
		• Scenario: AI systems like Deep Blue playing chess against world champions.
		• Details : Analyze how the Minimax algorithm and Alpha-Beta pruning were used to evaluate game states, optimize moves, and win against human players.

		Case Study 1: Solving the 4-Queens Problem
		 Objective: Demonstrate CSP techniques like backtracking and constraint propagation. Scenario: The 4-Queens Problem requires placing four queens on a chessboard such that no two queens threaten each other. Details:
		Formulate the problem as a CSP where variables represent columns, and domains represent rows.
		Use backtracking to place queens, ensuring constraints (no same row, column, or diagonal placement) are satisfied.
		Explore improvements with forward checking and arc consistency.
		Case Study 2: Solving a Sudoku Puzzle
c	Group - 2	 Objective: Apply constraint propagation and backtracking to a classic problem. Scenario: A partially filled Sudoku grid must be completed so that each row, column, and subgrid contains unique digits. Details:
(Gro	Represent rows, columns, and grids as variables. Apply initial constraint propagation to reduce possible values for each cell.
		Use backtracking to fill cells while maintaining consistency.
		Case Study 3: Scheduling Problem (Timetable Generation)
		 Objective: Analyze constraints and use CSP techniques for optimization. Scenario: A university needs to generate a timetable for courses, ensuring no instructor or student group has overlapping schedules. Details:
		Variables: Time slots for courses. Domains: Available time slots. Constraints: Instructors and classrooms must not overlap, and prerequisites must be scheduled in sequence. Use constraint propagation to eliminate invalid slots and backtracking to finalize the schedule.
		Case Study 4: Cryptarithmetic Problem

	 Objective: Solve a CSP involving digits and arithmetic operations. Scenario: Solve a problem like SEND + MORE = MONEY, where each letter represents a unique digit. Details:
	Variables: Letters (S, E, N, D, M, O, R, Y). Domains: Digits 0-9.
	Constraints: Each letter must have a unique digit, and the arithmetic sum must be valid.
	Apply constraint propagation and backtracking to identify valid digit assignments.
	Case Study 5: Resource Allocation for a Project
	 Objective: Optimize resource allocation using CSP techniques. Scenario: Assign tasks to team members while ensuring deadlines are met and workloads are balanced. Details:
	Variables: Tasks.
	Domains: Available team members. Constraints: Skillset match, task dependencies, and workload distribution.
	Use constraint propagation to filter infeasible assignments and backtracking for optimal allocation.
	Case Study 1: Expert Systems for Medical Diagnosis
Group - 3	 Scenario: Implementation of an expert system for diagnosing diseases based on patient symptoms and history. Details: Discuss the use of propositional logic and first-order predicate logic in building rule-based systems for accurate diagnosis. Case Study 2: Handling Uncertainty in Weather Forecasting
Gr	 Scenario: Probabilistic reasoning and Bayesian networks used in weather prediction systems. Details: Explore how these systems manage incomplete or uncertain data to provide accurate forecasts.

	Case Study 1: Loan Approval System
	 Objective: Design a rule-based system for automating loan approval processes in banks. Scenario: A system evaluates loan applications based on predefined criteria like credit score, income, and existing debt. Details:
	 Knowledge Base: Rules like IF credit_score > 700 AND income > 50000 THEN approve_loan. Inference Mechanism: Backward chaining to verify whether a specific loan can be approved, tracing required conditions. Outcome: Faster decision-making and reduced manual intervention in loan processing.
	Case Study 2: Smart Home Automation
Group - 4	 Objective: Implement a rule-based system for automating home appliances. Scenario: A smart home system adjusts lighting, temperature, and security based on user preferences and external conditions. Details: Knowledge Base: Rules like IF time = night AND motion_detected = true THEN turn on the lights. Inference Mechanism: Forward chaining to trigger actions based on sensor inputs. Outcome: Enhanced user convenience and energy efficiency.
	 Case Study 3: Rule-Based Chatbot Objective: Create a chatbot for answering customer queries using predefined rules. Scenario: A rule-based chatbot helps users with common issues like order tracking or account settings. Details:
	 Knowledge Base: Rules like IF user_query = "Where is my order?" THEN respond = "Please provide your order ID." Inference Mechanism: Forward chaining to determine the appropriate response based on input queries. Outcome: Seamless user interaction and improved customer support.

	Case Study 1: AI in Autonomous Vehicles
	 Scenario: Self-driving cars developed by companies like Tesla and Waymo. Details: Discuss the integration of computer vision, machine learning, and robotics to enable vehicles to navigate safely.
	Case Study 2: AI in Natural Language Processing (NLP)
Group - 5	 Scenario: Language translation systems like Google Translate or voice assistants like Alexa. Details: Examine the challenges of context understanding, ambiguity resolution, and real-time processing in NLP.
	Case Study 3: Legal and Ethical Issues in AI
	• Scenario: Controversy around AI bias in hiring systems and facial recognition technologies.
	Details : Discuss ethical considerations, data privacy issues, and the importance of fairness and accountability in AI systems.
Students must p	repare a report based on at least one case study analysis from each group of Module 5.

MA

Ins

	Classroom Procedure (Mode of transaction)
Teaching and	 Use of ICT tools in conjunction with traditional classroom teaching
Learning	methods
Approach	Interactive sessions
II	Class discussions (HONOURS) Practical sassions
	Practical sessions
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	CCA for Theory : 30 Marks
Assessment	Written Exam
Types	Oral Presentations
	• Assignments
	CCA for Practical : 15 Marks
	• Evaluation of Case Study Assignments/report based on Module 5
	• Report must include at least one case study from each of the five
	groups.
	B. End Semester Examination
	ESE for Theory: Written test (70 Marks, 2 Hours)
	Part A: Very Short Answer Questions (Answer all) - (5*2=10 Marks)

Part B: Short answer Questions (5 out of 7 Questions)- (5*6=30 Marks)Part C: Essay Questions (2 out of 3 Questions)- (2*15=30 Marks)ESE for Practical Component: 35 Marks
Lab Record : 15 Marks Viva : 20 Marks • Viva Voce based on the submitted report. • No Practical Examination.

- 1. Russell, S. and Norvig, P., "Artificial Intelligence A Modern Approach", 3rd edition, Prentice Hall
- 2. Dan W Patterson, Introduction to Artificial Intelligence & Expert Systems, PHI Learning 2010.
- 3. Lavika Goel, Artificial Intelligence: Concepts and Applications, Wiley, 2021

Suggested Reading:

- 1. Elaine Rich and Kevin Knight, "Artificial Intelligence" Second Edition, Tata McGraw-Hill Edition.
- 2. Nilsson Nils J, Artificial Intelligence: A new Synthesis, Morgan Kaufmann Publishers Inc. San Francisco, CA, ISBN: 978-1-55-860467-4.
- 3. Rajiv Chopra, Data Science with Artificial Intelligence, Machine Learning and Deep Learning, Khanna Book Publishing Company, 2024.
- 4. M.C. Trivedi, Introduction to AI and Machine Learning, Khanna Book Publishing Company, 2024.
- 5. Van Hirtum, A. & Kolski, C. (2020). Constraint Satisfaction Problems: Algorithms and Applications. Springer
- 6. Rajiv Chopra, Machine Learning and Machine Intelligence, Khanna Book Publishing Company, 2024

Terrar Signward	Mahatma Gandhi University Kottayam						
Programme	BCA (Honou	rs)					
Course Name	Entrepreneur	ship and Sta	artup Ecosyst	em			
Type of Course	VAC						
Course Code	MG4VACBC	MG4VACBCA200					
Course Level	NA	GAN	DHI				
Course Summary	human-center the possibility Students wi approaches,	This course provides a comprehensive introduction to Design Thinking, a human-centered approach to innovation that integrates the needs of people, the possibilities of technology, and the requirements for business success. Students will explore creative thinking processes, problem-solving approaches, and the importance of customer-centricity in the modern business landscape.					
Semester	4	101	Credits		2	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
	rippioacti	2	0	0	0	30	
Pre-requisites, if any	Nil MG	J-BCA (HONOU	RS)			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Understand the legacy of family businesses and key differentiations from entrepreneurship. Be able to identify a business opportunity and translate it into a viable business model.	An	1,3		
2	Understand the basic building blocks of creating a venture. Identify the elements of the Indian entrepreneurship ecosystem and leverage the relevant benefits from its constituents.	An	1,3		
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Introduction to Entrepreneurship & Family Business : Definition and Concept of entrepreneurship, Entrepreneur Characteristics, Classification of Entrepreneurs,	2	1
	1.2	Role of Entrepreneurship in Economic Development –Start- ups,	2	1
1	1.3	Knowing the characteristics of Family business with discussion on few Indian cases of Family Business like Murugappa, Dabur, Wadia, Godrej, Kirloskar etc.	3	1
	1.4	Evaluating Business opportunity: Sources of business ideas and opportunity recognition, Guesstimating the market potential of a business idea,	4	1
	1.5	Feasibility analysis of the idea, Industry, competition and environment analysis.	4	1
	2.1	Building Blocks of starting ventures, Low cost Marketing using digital technologies,	2	2
	2.2	Team building from scratch, Venture Funding, Establishing the value-chain and managing operations,	3	2
2	2.3	Legal aspects like IPR and compliances.	2	2
	2.4	Start-up Ecosystem: Know the components of the start-up ecosystem including Incubators, Accelerators, Venture Capital Funds, Angel Investors etc.,	4	2
	2.5	Know various govt. schemes like Start-up India, Digital India, MSME etc., Sources of Venture Funding available in India, Source of Technology, Intellectual Property management.	4	2

Teaching	Classroom Procedure (Mode of transaction)
and Learning Approach	 Use of ICT tools in conjunction with traditional classroom teaching methods Interactive sessions

	Class discussions
	MODE OF ASSESSMENT
Assessment	Continuous Comprehensive Assessment (CCA)
Types	CCA for Theory : 15 Marks
	Oral Presentations
	Assignments
	Written Exam
	B. End Semester Examination
	ESE for Theory: 35 Marks (1 Hour)
	Part A: Very Short Answer Questions (5 out of 7 Questions) - (5*3=15 Marks)
	Part B: Short Answer Questions (4 out of 6 Questions)- (4*5=20 Marks)

- 1. Startup India Learning Program by Start Up India available at www.startupindia.gov.in
- 2. Entrepreneurship, Rajeev Roy, Oxford University Press

3. Entrepreneurship: Successfully Launching New Ventures by R. Duane Ireland Bruce R. Barringer, Pearson Publishing

- 4. Family Business Management by Rajiv Agarwal, Sage Publishing Anish Tiwari (2003),
- "Mapping the Startup Ecosystem in India", Economic & Political Weekly

5. Ramachandran, K, Indian Family Businesses: Their survival beyond three generations, ISB Working Paper Series

विद्यया असूतसञ्जते

MGU-BCA (HONOURS)

Recent sugerwards	Mahatma Gandhi University Kottayam				
Programme	BCA (Honour	s)			
Course Name	IT and Enviro	nmental Sustainabilit	у		
Type of Course	VAC				
Course Code	MG4VACBC	A201			
Course Level	NA				
Course Summary	operations, pr challenges. It skills needed consequences,	This course aims to familiarize students with fundamental environmental concepts and their relevance to IT and business operations, preparing them to address forthcoming sustainability challenges. It is designed to equip students with the knowledge and skills needed to make decisions that account for environmental consequences, fostering environmentally sensitive and responsible future managers.			
Semester	4	Credits	<i>.</i> //	2	Total
Course Details	Learning	Lecture Tutorial	Practical	Others	Hours
	Approach	या अस्तम ⁰ रत	0	0	30
Pre-requisites, if any	NIL				

COURSE OUTCOMES (CO) J-BCA (HONOURS)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Describe the components of the environment, natural resources,	U	1,3
	and ecosystems, and explain sustainable practices for their		
	conservation.		
2	Identify types of pollution and waste, explain sustainable	An	1,3,
	development goals, and summarize key environmental laws and		6
	their impact on society and businesses.		
3	Explain key social issues, environmental laws, and the role of		1,6,
	population dynamics in promoting sustainable development.	An	7,8
*Reme (S), Int	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea erest (I) and Appreciation (Ap)	ite (C), Skill	1

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	Under	standing Environment, Natural Resources, and Sustainability:		
	1.1	Components and segments of the environment, the man-environment relationship, Concept of sustainability; Classification of natural resources, issues related to their overutilization, and strategies for their conservation.	2	1
1	1.2	sustainable practices in managing resources, including deforestation, water conservation, energy security, and food security issues. importance of public awareness and education.	3	1
	Ecosys	stems, Biodiversity, and Sustainable Practices:		
	1.3	Various natural ecosystems, learning about their structure, functions, and ecological characteristics.	2	1
	1.4	The importance of biodiversity, the threats it faces, and the methods used for its conservation.	2	1
	15	Need for sustainable ecosystem management, Significance of India as a mega diverse nation.	2	1
	Enviro	onmental Pollution, Waste Management, and Sustainable Development:		
2	2.1	Various types of environmental pollution, including air, water, noise, soil, marine pollution, E-waste, and their impacts on businesses and communities. Causes of pollution, such as global climate change, ozone layer depletion, the greenhouse effect, and acid rain, with a particular focus on pollution episodes in India.	2	2
	2.2	Classification of waste: solid, liquid, hazardous, and electronic waste. Principles of waste management: 3Rs – Reduce, Reuse, Recycle.	2	2
	2.3	Methods of waste disposal: landfilling, composting, incineration, recycling. E-waste management: Challenges and best practices. Role of IT in efficient waste management (smart bins, waste tracking apps).	3	2
	2.4	Concept and need for sustainability. Principles of sustainable development: Economic growth, Environmental protection, Social inclusion.	2	2
	2.5	UN Sustainable Development Goals (SDGs) with a focus on environmental goals. Green technologies and innovations: Renewable	2	2

		energy, Green computing, Eco-friendly products. Role of individuals and technology professionals in promoting sustainability.		
	Social	Issues and Legislation:		
	3.1	Dynamic interactions between society and the environment, with a focus on sustainable development and environmental ethics.	3	3
3	3.2	Overview of key environmental legislation and the judiciary's role in environmental protection, including the Water (Prevention and Control of Pollution) Act of 1974, the Environment (Protection) Act of 1986, and the Air (Prevention and Control of Pollution) Act of 1981.	2	3
	3.3	Environmental justice, environmental refugees, and the resettlement and rehabilitation of affected populations; Ecological economics, human population growth, and demographic changes in India.	3	3

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, Discussions, Case Analysis
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA)
	CCA for Theory: 15 Marks
	 Written test Assignments MCQ
	B. End Semester Examination (ESE) MGU-BCA (HONOURS)
	ESE for Theory: Written Test (35 Marks, 1 Hr) Part A: Short Answer Questions (7 out of 10 Questions) - (7*5=35 Marks)

REFERENCES:

- 1. Text Book of Environmental Studies by Bharucha, E., 3rd Edition, Orient Blackswan Private Ltd.
- 2. Environmental Studies, 3rd ed., Poonia, M.P. Khanna Book Publishing Co.
- 3. Sustainable Development: Environment, Energy and Water Resources. Roy, M. G., Ane Books.
- 4. Fundamentals of environmental studies, Basu, M., & Xavier Savarimuthu, S. J., Cambridge University Press.
- 5. Text Book of Environmental Studies, Dave, D., & Katewa, S. S Cengage Learning India Pvt Ltd.

6. Rajagopalan, R. *Environmental studies: from crisis to cure* (4th ed.). Oxford University Press.

SUGGESTED READINGS:

Web links:

- <u>https://www.ourplanet.com</u>
- <u>https://www.undp.org/content/undp/en/home/sustainable-development-goals.html</u>
- <u>www.myfootprint.org</u>
- <u>https://www.globalchange.umich.edu/globalchange1/current/lectures/kling/ecosystem/ecosystem.html</u>

MGU-BCA (HONOURS)

REPAIR SEPARATE	Mahatma Gandhi University Kottayam						
Programme	BCA (Honours)						
Course Name	Object Oriented Programming using Java						
Type of Course	SEC	SEC					
Course Code	MG4SECBCA200	NNI					
Course Level	NA		20				
Course Summary	This course covers and database conr		ect-oriente	ed program	nming co	ncepts, swing	
Semester	4 Credits 5 Total Hours						
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical	Others 0	105	
Pre-requisites, if any		S 0 2 0 105 Knowledge about programming logic					

course outcomes (co)/विद्याया यास्तमञ्जूत

CO No.	Expected Course Outcome	Learning Domains *	PO No			
CO1:	Understand the fundamental concepts of object-oriented programming using Java.	U	2			
CO2:	Utilize arrays, String, Vectors, Wrapper Classes and inheritance in Java programming	An	2			
CO3:	Utilize packages, Exceptions and Threads in Java programming	An	2			
CO4:	ApplybasicjavaProgrammingconcepts,MultithreadingExceptions,andpackagesforproblemsolving.	An	2			
CO5:	Understand basic GUI and JDBC architecture, and develop Java GUI applications to communicate with databases using JDBC.	А	2			
*Remembe	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate I, Create (C), Skill (S) Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Concepts of Object-Oriented Programming, Benefits of OOP, Features of Java, Java Environment, defining a class, fields declaration, method declaration, creating object, accessing class members	6	1
1	1.2	Decision Making, Branching & Looping: Decision Making with Control Statements, Looping statements, Jump in loops, Labelled loops.	2	1
	1.3	method overloading, constructors, constructor overloading, command line arguments, super keyword, static members	7	1
	2.1	Arrays-one dimensional arrays, declaration, creation, initialization of arrays, two dimensional arrays.	5	2
2	2.2	String class, Vectors, Wrapper Classes, Enumerated Types.	4	2
	2.3	Inheritance, overriding methods, dynamic method despatch, final (variables, methods and classes), abstract methods and classes, interfaces, visibility control	6	2
	3.1	Packages: -Java API packages overview (lang, util, io, swing, applet), Creating and accessing packages, creating user defined packages, Adding class to a package.	5	3
3	3.2	Exception Handling: Using the main keywords of exception handling: try, catch, throw, throws and finally; Nested try, Multiple catch statements, Creating user defined exceptions	4	3
	3.3	Multithreading-creation of multithreaded program- Thread class -Runnable interface-thread life cycle.	6	3
		Simple Java Programs:		
4	4.1	 Read numeric data from user and output results.(Fibonacci series & Factorial etc.) Numeric and String data as Command line arguments. 	4	4
	4.2	 Simple Programs using arrays: Sorting, searching, matrix operations, palindrome etc. Programs to Utilize String Methods 	6	4

	4.3	 Programs to implement 1. Method Overloading, Constructor Overloading 2. Inheritance, Method overriding, Dynamic Method Despatch. 3.super, this, final and static keywords 4.Abstract class, interface, Package 5. Exception handling. 6.Multithreading 	20	4
5	5.1	Using NetBeans IDE Implement Simple Programs for Swing : GUI programming using Swing- Window(Jframe, Jdialog), Containers(Jpanel, JtabbedPane, JscrollPane, JdesktopPane) Controls (Jlabel, JtextField, JtextArea, Jbutton, JcheckBox, JradioButton, Jlist, JcomboBox, Jtable), Layout managers (FlowLayout, BorderLayout, GridLayout, GridBagLayout, CardLayout, Null Layout)	20	5
	5.2	Programs for Database Connectivity JDBC - The Structured Query Language, The Connection Interface, The Prepared Statement Interface, ResultSets.	10	5

MGU-BCA (HONOURS)

Teaching and Learning Approach	Classroom Procedure (Mode of Transaction) ICT Enabled lectures, Practical Sessions
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) : 40 Marks CCA for Theory : 25 Marks Written Exam Oral Presentations Assignments CCA for Practical : 15 Marks Lab assignments Based on Module 4.
	 B. End Semester Examination ESE for Theory: Written Test (50 Marks, 1.5 Hrs) Part A: Very Short Answer Questions (Answer all) - (5*3=15 Marks) Part B: Short Answer Questions (4 out of 5 Questions) - (4*5=20 Marks) Part C: Essay Questions (1 out of 2 Questions) - (1*15=15 Marks) ESE for Practical: 35 Marks (2 Hrs) Question 1- (From Module 4): 10 Marks. Question 2- (From Module 5): 15 Marks. (Use NetBeans IDE for implementing the programs) Record: 5 Marks. Viva: 5 Marks.

विराया अम्तसइनुते

1. Patrick Naughton – Java 2, The Complete Reference, Seventh Edition.

SUGGESTED READINGS:: GU-BCA (HONOURS)

- 1. Advanced Java Programming Uttam K Roy, Oxford University Press; UK ed. Edition
- 2. E. Balagurusamy-Programming with Java, Third edition, McGraw Hill Publishers.
- 3. Cay S. Horstmann & Gary Cornell Core Java Volume 1 Fundamentals, Eighth edition.
- 4. K. Somasundaram Programming in Java 2, First edition, Jaico Publishing House.

Pararel Sugardurge	Mahatma Gandhi University Kottayam					
Programme	BCA (Honours)					
Course Name	Probability Distrib	utions ar	d Statistic	al Inferenc	e	
Type of Course	SEC					
Course Code	MG4SECBCA201	VIG4SECBCA201				
Course Level	NA	ND				
Course Summary	This course covers and hypothesis testi real-world problem	ing, enabl			5	
Semester	4		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
		4	0	0	0	60
Pre-requisites, if any	NIL	TAY		λ		
	्रावराया उ	নক্তনব	ারল্যন			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome URS)	Learning Domains *	PO No
1	Analyse random variables, probability distributions, and statistical moments to model uncertainty, compute key metrics, and solve practical problems in data science and decision-making.	An	1
2	Apply key theoretical distributions to model real-world data, compute statistical properties, and solve probability problems—equipping them with essential tools for data analysis and predictive modelling.	А	1,2
3	Describe commonly used sampling distributions and their interrelationships.	U	1,2

4	Illustrate hypothesis testing, including types of hypotheses and errors, critical concepts like p-value and power, tests based on t, z, and chi-square distributions.	А	1,2			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S) Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Units Course description				
		Random Variables				
	1.1	Random Variables: Definition of discrete and continuous random variables.	2	1		
1	1.2	Probability density(mass) function and distribution function (discrete case) with properties (without Proof),	4	1		
	1.3	Expectation, variance and Moment generating function of a discrete random variable with properties (without proof), Related problems.	4	1		
		Standard Probability Distributions				
2	2.1	Theoretical distributions: Discrete Distribution-Bernoulli, Binomial and Poisson-mean, variance, moment generating functions (without proof) and fitting of data, Problems based on the distributions.	9	2		
2	2.2	Problems based on the distributions, Continuous Distribution-Normal distribution, Important properties (without proof) of the distribution (mean, variance, moments, MGF, M.D. and Q.D, etc. fitting excluded).	5	2		
	2.3	Area under the normal curve related problems.	4	2		
		Sampling Distributions				
3	3.1	Sampling distribution, Statistic, Parameter, Standard Error.	2	3		

	3.2	Sampling Distributions of Mean of the sample from Normal population and distribution of Variance (without derivation).	3	3
	3.3	Statement of the form of the distributions Z, t, Chi-square and F (form alone), properties (without derivation) and uses, Inter relationships.	8	3
		Testing of Hypothesis		
	4.1	Statistical inference definition, Testing of hypotheses procedure, Statistical hypotheses, Simple and composite hypotheses, Null and Alternate hypothesis, Parametric and Non-parametric hypotheses.	2	4
4	4.2	Type-1 and Type-II errors, Critical Region, One-tailed and Two-tailed tests, Size of the test, Significance level, P value, Power.	2	4
	4.3	Tests based on t and Z- Testing of Population mean (One sample and two samples).	4	4
	4.4	Testing of Population Proportion (One sample and Two samples), Paired sample t-test.	6	4
	4.5	Chi-square test of goodness of fit, Chi-square test of independence. BCA (HONOURS)	5	4

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Brainstorming lectures Explicit teaching Active Cooperative learning
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) CCA for Theory: 30 Marks • Quiz / MCQ • Assignments • Tests

B. End Semester Examination (ESE)
ESE for Theory: Written Test (70 Marks, 2 Hrs) (Use of non-programmable calculator and statistical tables allowed)
Part A: Answer any 5 questions out of 8. Each question carries 2 marks. (5 x 2 = 10 marks)
Part B: Answer any 5 questions out of 8. Each question carries 6 marks. $(5 \times 6 = 30 \text{ marks})$.
Part C: Answer any 2 questions out of 4. Each question carries 15 marks. (2 x 15 = 30 marks)
GANDA

- 1. S.C. Gupta and V.K. Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand and Sons
- 2. S.P. Gupta: Statistical Methods (Sultan Chand & Sons Delhi)
- 3. V.K. Rohatgi: An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
- 4. B.L. Agarwal: Basic Statistics, New Age International (p) Ltd.

विद्यया अमूतसञ्च

MGU-BCA (HONOURS)

Tara Sinanal	Mahatma Gandhi University Kottayam					
Programme	BCA (Honours)					
Course Name	Design Thinking and Innovation					
Type of Course	SEC					
Course Code	MG4SECBCA202	MG4SECBCA202				
Course Level	NA GANDIA	JA GANDA				
Course Summary	This course provides a comprehensive introduction to Design Thinking, a human-centered approach to innovation that integrates the needs of people, the possibilities of technology, and the requirements for business success. Students will explore creative thinking processes, problem-solving approaches, and the importance of customer-centricity in the modern business landscape.					
Semester	4 Credits 2 Tota					
Course Details	Approach Lecture Tutorial Practical Others	lours				
	2 0 0 -	30				
Pre-requisites, if any	Basic awareness of problem solving.					

COURSE OUTCOMES(CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
CO1:	Propose real-time innovative product designs and Choose appropriate frameworks, strategies, techniques during prototype development	An	1,3
CO2:	Know wicked problems and how to frame them in a consensus manner that is agreeable to all stakeholders using appropriate frameworks, strategies, techniques during prototype development.	An	1

CO3:	Analyze emotional experience and Inspect emotional expressions to better understand users while designing innovative products.	An	1,3			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1	Basics of Design Thinking: Understand the concept of innovation and its significance in business. Understanding creative thinking process and problem solving approaches. Know Design Thinking approach and its objective.	2	1
1	12Design Thinking and customer centricity - real world examples of customer challenges, use of Design Thinking to Enhance Customer Experience, Parameters of Product Experience, Alignment of Customer Expectations with Product.			1
	3	Discussion of a few global success stories like AirBnB, Apple, IDEO, Netflix etc. Explain the four stages of Design Thinking Process – Empathize, Define, Ideate, Prototype, Implement	4	1
1 2 2		Learning to Empathize and Define the Problem : Know the importance of empathy in innovation process – how can students develop empathy using design tools Observing and assimilating information	2	2
		Individual differences & Uniqueness Group Discussion and Activities to encourage the understanding, acceptance and appreciation of individual differences.	3	2
	3	What are wicked problems? Identifying wicked problems around us and the potential impact of their solution	3	2
	4	Know the various templates of ideation like brainstorming, systems thinking Concept of	2	2

		brainstorming – how to reach consensus on wicked problems		
	1	Ideate, Prototype and Implement: Mapping customer experience for ideation. Know the methods of prototyping, purpose of rapid prototyping. Implementation	4	3
3	2	Feedback, Re-Design & Re-Create: Feedback loop, focus on User Experience, address ergonomic challenges, user focused design	3	3
	3	Final concept testing, Final Presentation – Solving Problems through innovative design concepts & creative solution	3	3

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Use of ICT tools in conjunction with traditional classroom teaching methods Interactive sessions Class discussions
Assessment Types	MODE OF ASSESSMENT A: Continuous Comprehensive Assessment (CCA) CCA for Theory : 15 Marks • Written test • Assignments • Oral Presentations
DEEEDENICES.	B. End Semester Examination ESE for Theory : Written Test (35 Marks, 1 Hour) Part A: Short Answer Questions (7 out of 10 Questions) - (7*5=35 Marks)

1. E Balaguruswamy (2023), Developing Thinking Skills (The way to Success), Khanna Book Publishing Company .

2. Tim Brown, (2008), "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harvard Business Review.

3. 8 steps to Innovation by R T Krishnan & V Dabholkar, Collins Publishing.

SUGGESTED READINGS:

1. Design Thinking by Nigel Cross, Bloomsbury.

Marrier Sugarange	Mahatma Gandhi University Kottayam					
Programme	BCA (Hono	ours)				
Course Name	Data Visua	lization				
Type of Course	DSE					
Course Code	MG4DSEB	CA200				
Course Level	NA	NA				
Course Summary	visualizatio visualizatio limitations visualizatio introduces preparation	This course provides a comprehensive introduction to data visualization, covering various types of data and the entire data visualization process. The course also addresses the challenges and limitations of data visualization and offers an overview of popular visualization tools and data storytelling principles. Additionally, it introduces the Power BI interface, data transformations and preparations, data models and visualizations, and the process of publishing and sharing reports.				
Semester	4	Crafer	edits		3	Total Hours
Course Details	Learning	Lecture	Tutorial	Practical	Others	
	Approach	2	0	1	-	60
Pre-requisites, if any	Familiarity with using a computer, including file management and basic software navigation. Basic knowledge of data structures, such as tables and databases. Basic understanding of data analysis concepts and familiarity with data types.					

COURSE OUTCOME

CO No.	Expected Course Outcome	Learning Domains *	PO No
CO1:	Analyze the fundamentals of data visualization and its importance.	An	1
CO2:	Compare and contrast different types of visualizations and their appropriate uses.	An	2,3
CO3:	Use Power BI to create and customize various types of visualizations	А	2,3

0

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1	1	Introduction to Data Visualization Definition and importance of data visualization-Role of data visualization in decision making, Types of data (numerical, categorical, temporal, geographical)-	2	1
	2	Data visualization process (data collection, exploration, analysis, visualization, interpretation)	4	1
	3	Challenges and limitations of data visualization	4	1
	1Visualization tools & Data Storytelling Overview of Visualization Tools (e.g., Excel, Tableau, Power BI, Python)- Comparing and contrasting features and Use Cases among these tools.		5	2
2	2	Principles of Data Storytelling: Narrative and Context-Best Practices for Dashboard Layout and Interactivity.	5	2
	3	Designing Effective Visualizations Principles of Good Visualization Design.	3	2
4 Understanding an		Understanding and Using Color in Visualizations	3	2
	5	Importance of Data Modelling in Visualization.	4	2
Practical	Compo	nent: Lab Programs for Data Visualization Using Pov	ver BI	
3 Introduction to Power BI Interface and Basics 1. Installation and interface overview 2. Exploring the Power BI workspace: Ribbon, panes, and canvas. 3 Importing data from Excel and CSV files. 4. Introduction to multiple data sources 5. Basic report creation: Adding visuals and saving a report.		6	3	

	 Cleaning data: Removing duplicates, handling missing values. Transforming data: Splitting columns, changing data types, renaming columns. Merging and appending queries. Creating custom columns and calculated columns 		
3	Data Modelling 1. Creating relationships between tables 2. Identifying and resolving data inconsistencies 3. Creating calculated columns and measures	6	3
4	 Creating Basic Visualizations 1. Creating various chart types (bar, column, line, pie, area, etc.,) 2. Formatting and customizing visualizations 	6	3
5	 Publishing and Sharing Reports 1. Publishing a report to Power BI Service. 2. Sharing reports and dashboards with team members. 3. Setting up data refresh schedules and managing permissions 	6	3

	Classroom Procedure (Mode of transaction)			
Teaching and Learning Approach	Use of ICT tools in conjunction with traditional classroom teaching methods			
	Interactive sessions			
	Class discussions			
	MODE OF ASSESSMENT			
	Continuous Comprehensive Assessment (CCA)			
	CCA for Theory : 15 Marks			
Assessment Types	Written Exam			
	Oral Presentations			
	Assignments			
	CCA for Practical : 15 Marks			
	Lab assignments			
	B. End Semester Examination			
	ESE for Theory: Written Test (35 Marks, 1 Hr)			
	Part A: Very Short Answer Questions (5 out of 7) -			
	(5*3=15 Marks)			
	Part B: Short Answer Questions (4 out of 6 Questions) - (4*5=20 Marks)			

ESE for Practical: 35 Marks
Implementation: 15 Marks.
Record : 10 Marks
• Viva : 10 Marks

1. "Storytelling with Data: A Data Visualization Guide for Business Professionals" Cole Nussbaumer Knaflic, Wiley; 1st edition, 2015.

2. "The Visual Display of Quantitative Information" by Edward Tufte, Graphics Press USA; 2nd edition, 2001.

SUGGESTED READINGS:

1. "Data Visualization: A Practical Introduction" Kieran Healy, Princeton University Press, 2018.

2. "Analyzing Data with Power BI and Power Pivot for Excel", Alberto Ferrari and Marco Russo, Microsoft Press; 1st edition, 2017.

3. "Microsoft Power BI Complete Reference", Devin Knight, Brian Knight, Mitchell Pearson, and Manuel Quintana, Packt Publishing; 1st edition, 2018.

WEB RESOURCES:

1. https://learn.microsoft.com/en-us/power-bi/

2. https://www.storytellingwithdata.com/

3.https://jpsm.umd.edu/sites/jpsm.umd.edu/files/syllabi/Syllabus_Introduction%2 0to%20 Data%20Visualization_Spring%202024.pd

	Mahatma Gandhi University Kottayam					
Programme	BCA (Honours)					
Course Name	Introduction to Machine Learning					
Type of Course	DSE					
Course Code	MG4DSEBCA201					
Course Level	NA					
Course Summary	This course provides a comprehensive overview of machine learning, covering both theoretical concepts and practical applications, preparing students to apply ML techniques in various domains.					
Semester	4 Credits 3 Total					
Course Details	Learning ApproachLectureTutorialPracticalOthersHours201-60					
Pre-requisites, if any	Basic knowledge of statistics and probability. Familiarity with fundamental programming concepts and proficiency in Python. With libraries such as NumPy, pandas, Scikit-Learn, NLTK, Matplotlib, and Seaborn					

COURSE OUTCOMES(CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
CO1:	Define and explain machine learning concepts, types, and basic metrics.	An	1
CO2:	Understand supervised and unsupervised learning techniques	An	1
CO3:	Implement and evaluate supervised learning techniques, including K-Nearest Neighbors, linear regression, and logistic regression, and measure model performance using accuracy, precision, recall, and F1 score.	А	1
CO4:	Apply and visualize clustering algorithms such as K- Means, hierarchical clustering, and DBSCAN on	А	2,3

	datasets. This practical application helps you understand their real world use.		
CO5:	Perform dimensionality reduction using Principal Component Analysis (PCA) and interpret the results.	А	2,3
CO6:	Develop and assess classification models using random forests, support vector machines, and neural networks	А	2,3
CO7	Demonstrate ensemble learning concepts through bagging with random forests and boosting with the AdaBoost algorithm	А	2,3
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evalua	te (E), Create (C),	

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Crea Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.	
1	1	Introduction to Machine Learning Introduction: Definition, History and Application of Machine Learning,	2	1	
	2	Types of Machine Learning: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning. Labeled and Unlabelled Dataset. Supervised Learning Tasks: Regression vs. Classification,	5	1	
	3	Learning Framework: Training, Validation and Testing of ML models. Performance Evaluation Parameters: Confusion matrix, Accuracy, Precision, Recall, F1 Score, and AUC	8	1	
2	1SupervisedLearningandUnsupervisedLearning1Regression:Linearandon-linearRegression,LogisticRegression.Classification:NaïveBayes,K-NearestNeighbors,DecisionTrees.				
	2 Linear model: Introduction to Artificial Neural Networks, Perceptron Learning Algorithm, Single Layer Perceptron, Introduction to Support Vector Machine for linearly separable data.				
	3	Clustering: K-Means, Hierarchical Clustering, DBSCAN, Clustering Validation Measures. ML Applications: Ethical Considerations in Machine Learning, Case study and Real- world Applications	6	2	

		Introduction to Machine Learning Lab			
3	1.Implement linear regression on a dataset and visualize the regression line. 2. Implement logistic regression on a binary classification dataset and plot the decision boundary.31Implement and evaluate the performance of Decision tree ID3/Cart classifier for any given dataset. 4.Implement and evaluate the performance of the Naive Bayes Classifier on a given dataset.				
	2	1.Implement K-Means clustering on a point dataset and visualize and evaluate the clusters. 2. Implement hierarchical clustering on a dataset and plot the dendrogram. 3. Implement DBSCAN clustering on a dataset and visualize and evaluate the clusters.	5	4	
	3	1. Perform Principal Components Analysis (PCA) and apply any one or more classifiers to show the performance variation with or without feature reduction.	5	5	
	4	1. Build and evaluate a random forest classifier using a numerical dataset. 2. Implement a support vector machine for linearly separable classes and visualize the margins and decision boundary	8	6	
	5	1.Build a single layer perceptron model to classify AND, OR, and XOR problems (may use TensorFlow/Keras) and visualize their decision boundaries. Also evaluate its performance. 2. Demonstrate the concept of boosting using the AdaBoost algorithm	7	7	

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Use of ICT tools in conjunction with traditional classroom teaching methods Interactive sessions Class discussions
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) : 30 Marks CCA for Theory : 15 Marks Written Exam Oral Presentations Assignments CCA for Practical : 15 Marks Lab assignments Based on Module 3.

B. End Semester Examination
ESE for Theory: 35 Marks (1 Hour)
Written Examination for Modules 1 and 2.
Part A: Very Short Answer Questions (5 out of 7) - (5*3=15 Marks)
Part B: Short Answer Questions (4 out of 6 Questions) - (4*5=20
Marks)
ESE for Practical Component: 35 Marks
Lab Record : 10 Marks
Viva : 25 Marks (5 Marks for each CO in Module 3, 5*5= 25 Marks)
(No Practical Examination)

1.Rajiv Chopra (2024), Machine Learning and Machine Intelligence, Khanna Publishing House.

2. Jeeva Jose (2023), Introduction to Machine Learning, Khanna Publishing House.

3. Mitchell T. (1997). Machine Learning, First Edition, McGraw-Hill.

4. Kalita, J. K., Bhattacharyya, D. K., & Roy, S. (2023). Fundamentals of Data Science: Theory and Practice. Elsevier. ISBN 9780323917780

SUGGESTED READINGS:

1.Flach, P. A. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press. ISBN: 9781107422223, 2012.

2. Duda, R. O., Hart, P. E., Stork, D (2007). Pattern classification (2Ed), John Wiley & Sons, ISBN-13: 978-8126511167.

3. Haykin S. (2009). Neural Networks and Learning Machines, Third Edition, PHI Learning. MGU-BCA (HONOURS)

4. Chollet, F. (2018). Deep Learning with Python. Manning Publications.

5. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

7. Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems* (1st ed.). O'Reilly Media

Acres Suparante	Mahatma Gandhi University Kottayam						
Programme	BCA (Honou	irs)					
Course Name	Web Program	nming –II					
Type of Course	DSE	DSE					
Course Code	MG4DSEBCA	4202					
Course Level	NA	GAN	UHI				
Course Summary	Node.js mo management	This course covers the Node.js environment, the REPL terminal, Node.js modules, Node Package Manager (NPM), file management, event handling, database operations, and an introduction to the Express framework.					
Semester	4	4 Credits 3 Total					
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours	
	Approach	2	0	1	0	60	
Pre-requisites, if any	Basic Knowle	edge of Jav	aScript and	OOPS			

COURSE OUTCOMES (CO) U-BCA (HONOURS)

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon	completion of this course, the students will be able to:				
1	Understand Node JS and REPL terminal and Experiment with Node JS Modules and Node Package Manager	U	1		
2	Make use of Web Server to manage files.	U	1		
3	Understand event handling and database operations	А	1,2		
4	Develop applications in Node JS and Express	А	1,2		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Features and advantages of Node JS, Traditional Web Server Model, Node.js Process Model, Asynchronous programming with Node.js, Types of applications that can be developed using Node.js	2	1
1	1.2	Primitive Types, Object Literal, Functions, NODE.JS MODULES: Module, Module Types: Core Modules, Local Modules, Third Party Modules, Module Exports. Using Modules in a Node.js File, Using the Built in HTTP, URL.	5	1
	1.3	Node Package Manager: NPM, Installing Packages Locally, Adding dependency in package.json, Installing packages globally, Updating packages.	3	1
	2.1	Handling HTTP requests, Sending requests.	2	2
2	2.2	File System-Reading, Writing a File, Writing a file asynchronously, Opening a file, deleting a file, Other IO Operations: Append, Rename, Truncate. File System Module with URL Module Create, Read, Remove a Directory.	5	2
	SectorEventEmitterclass,MethodsandEventsof3.1EventEmitterClass,returningeventemitter,Extend3.1EventEmitterClass,PassingArgumentsand 'this' tolisteners,AsynchronousandSynchronouscall,HandleEventsonlyOnce,ErrorEvents		3	3
3	3.2	Database Connectivity-Connection string, Configuring, working with insert, select command, updating records, delete records, drop tables, Ordered Result Set	4	3
	3.3	Express And Node Js-Introduction to Express Framework, Express Server Request-Response Routes, Route Parameters, Multiple Route Callback/Handler Functions, Methods of Response Object, Chaining Route Handlers, Send Static Files, Accept User Input, Send file as a response, Templates and Express.	6	3

	4.1	Explore the Node.js REPL, Use Core Modules, Create and Import Custom Modules, Install and Use a Third-Party Module, Install a local package (e.g., chalk for colorful console output), Add dependencies in package.json and update them, Install a global package (e.g., nodemon) and use it to run a server, Create file and perform read and write operations, Perform asynchronous file operations like appending and renaming,Create a directory, add files, and remove the directory.	10	4
4	4.2	Create and Send HTTP requests using the http module, Create an EventEmitter instance (Handle a custom event with a listener, Pass arguments to the listener function.), Implement an EventEmitter that triggers events based on asynchronous tasks (e.g., file read completion), Handle error events, Set up a connection to a database (e.g., MySQL or MongoDB) and Perform basic CRUD operations.	10	4
	4.3	Build an Express server (Handles GET and POST routes, Sends JSON and HTML responses.), Implement route parameters and query string handling, send static files using Express, Accept and validate user input through forms, implement file upload functionality, use a template engine like Pug to render dynamic views.	10	4

Teaching and Learning G Approach	Classroom Procedure (Mode of Transaction)
	Lecture & Lab Sessions
	MODE OF ASSESSMENT Continuous Comprehensive Assessment (CCA)
	CCA for Theory : 15 Marks
Assessment Types	Written Exam
	Oral Presentations
	Assignments
	CCA for Practical : 15 Marks
	Lab assignments
	B. End Semester Examination
	ESE for Theory: Written Test (35 Marks, 1 Hour)
	Written Examination for Modules 1, 2 and 3.

 Part A: Very Short Answer Questions (5 out of 7) - (5*3=15 Marks) Part B: Short Answer Questions (4 out of 6 Questions) - (4*5=20 Marks) ESE for Practical: (35 Marks, 2 Hrs)
1. Design & Development - 20 Marks
1. Design & Development - 20 Marks 2. Viva- 10 Marks

1. Dhruti Shah, "Node.JS Guidebook", BPB Publications, 2018.

विद्यया असृतर

MGU-BCA (HONOURS)

Syllabus

SUGGESTED READINGS:

1. Basarat Ali Syed, Beginning Node.js, A press, 2014,

WEB REFERENCES:

- 1. https://nodejs.org/en/docs/
- 2. https://www.tutorialsteacher.com/nodejs